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Abstract:

In this paper, motivated by Chi and Chiou's weighted
least—squares FWLS Chebyshev approximation method [5]
which is for the design of 1-D (one—dimensional) FIR
digital filters with arbitrary complex frequency response,
we propose a new self—initiated iterative WLS
approximation method for the design of 2—D equiripple
FIR digital filters with arbitrary 2—D complex frequency
response. Several circularly symmetric lowpass filter design
examples are provided to justify the good performance of
the proposed approximation method.

1. Introduction

Various two—dimensional digital filter design methods
have been reported in the open literature such as the
windowing method, the frequency transformation method
and the approximation method. The approximation
method usually needs more computational efforts compared
with other methods, whereas, it is still most useful because
it is free from windowing effects; it can accommodate
different approximation errors in different frequency bands;
the required order is usually smaller compared with other
methods for the same specifications. In particular, minimax
(Chebyshev) criterion based filters can only be obtained by
approximation methods such as exchange ascent algorithms
L,2], and Algazi, Suk and Rim's WLS method [3] which is

asically an extension of 1-D Lawson's algorithm.

Recently, Chi and Kou [4] proposed a new efficient
WLS Chebyshev approximation method for the design of
1-D equiripple linear—phase FIR filters. Based on Chi and
Kou's method, Chi and Chiou [5] proposed another WLS
Chebyshev approximation method which is
computationally more efficient than Chi and Kou's method
and can approximate any 1-D arbitrary complex frequency
response. In this paper, motivated by Chi and Chiou's
WLS Chebyshev approximation method, we propose a new
WLS approximation method for the design of 2-D
equiripple FIR digital filters. The proposed method can
also approximate any arbitrary two—dimensional complex
frequency response.

2. The New 2-D WLS Approximation Method

The frequency response of the 2-D FIR digital filter
with a finite domain of support S to be designed can be
expressed by

Hwpw) = 3 ) hlnpny) e 3@mTepm). 1)
(n),ny)€S
The approximation error E(wl,wz) is defined as
E(wy,wy) = Hy(wy,wy) — H(w),w,) (2)
where H d( “’1"""2) is the desired frequency response. Assume
that Hd(wl,w2) is defined over p disjoint nontransition
bands $1, ﬁz, vy .Rp, and that the desired tolerance error
ratio among 521, 32, ey ‘%p’ I8 pyipgieipy with

min{p;,p9; - pp}=1. Our objective is to find a set of

filter coefficients {h(n;,ny)|(n;,ny)€S} such that H(w,,w,)

is of equiripple with the resultant approximation error

ratio  6,:0,:0-:0 = piipgieceip. where 8k =
1°72 172 P

max{|E(w,wp)|,  (wj,wp)eR} is the maximum

approximation error in ‘%k Next, let us present the WLS

estimator on which the new approximation method is
based.

For simplicity, assume that the filter to be designed is
zero—phase with real filter coefficients. Under this
assumption, the frequency response H(wl,w2) is real due to

h(n;,ny) = h(-n;,~n,) and can be expressed as

H(wj,wp) = h(0,0+ ) ¥
(nl,n2)ES'
+ cos(wy Ny +wynoy) (3)
where S' is a set such that S is equal to the union of three
mutually exclusive sets, {(0,0)}, S' and S" where S" is S'
flipped with respect to the origin. Let us consider M
sampling points in the set
5B=£1U$2U ---USﬁp,

denoted (wli’w2i)’ i=1,2, ..., M, at which we express the

approximation errors in the following vector form:
E=H,-Dh

2 h(nl,nz)

where
t
E = (E(wll’wﬂ)’ ey E(w1M1w2M)) H
= t
ﬂd = (Hd(w11:w21)a ey Hd(wlew2M)) ,
h is a vector containing all nonredundant h(nl,n2)'s and D
is a matrix with proper dimension whose components can
be easily deterrilined from (3). It is well-known that the

WLS estimate, h, is given by [6]
h=['wD]" D' WH, (5)
where W=diag[w1,w2, ,wM] with wiZO, which minimizes
the sum of weighted error squares
IW=E'WE (6
and possesses a well-known property as follows:
(P1) The larger the weight w;, the smaller is the absolute
error |E(wy;,wy;) |-

Let us define some notations for latter use:
¢ Piecewise—constant function We(“’l’“’z)’ (wl,w2)e R:

We(wlr“:’Q) = I/Pk7 if (wl,“’g)e'%k (7
¢ Error ripple elJ((wl,w2) in & :
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elj{(wl,wQ) = E(w),w,), (wl,w2)€$f( Ry (8)
where eit.her e]{(“fl""Q)ZO or e]-]((w swp)<0  for  all
(wl,w2)e$11(, and b‘fi is a simply connected region such
that & = & U A2 U ---
number of error ripples in ‘Q’k
e Weighted error ripple amplitude 8y i

ay j=max{ | W (wy;,wp;)- e () (w09 ) R} (9)

.9&11?, where m is the total

__The new WLS approximation method, which is shown
in Figure 1, is an iterative algorithm based on (P1) for
finding the optimum weight w; such that |E(w1,w2)f is of

equiripple with the desired approximation error ratio
among the nontransition bands. It begins with the initial
weighting function

0 .
w0 = W () 090), (0, i=12, .., M. (10)
Assume that we ended up with the weighting function

wizwi(n_l) at the (n—1)th iteration. For the nth iteration,

the WLS estimate h is computed by (5) with wizwgn_l).

Then, the associated E is computed by (4) with h:ﬂ.

Next, we search for the weighted error ripple amplitudes
ay j for all k and j. Finally, we check whether the
9,

frequency response of the designed filter is of equiripple for
(w},wo;)€ 2 by

(@max 3min)/ 4max $ @ (11)
where

Amax= axta b A= min{ay gl

and « is a preassigned small positive constant. If it is not
of equiripple and n<L where L is the maximum allowed
ift(f]ration number, we update the weighting function as
ollows:

(n-1) . d
O W ¢ (wyjr0g) B @y )|

~ 12)
i (n-1) . q (
i | Welwyjrwgy)  Ewyy,wg) |
where q is a positive real number and must be set in
advance. Note that 0 <wi(n)51 for all ( W)y Wop JER

Empirically, we found that the proposed method converges
for 1<q<2 and that q=1.5 is a good choice.

Although the proposed algorithm was illuminated via a
zero—phase case for which H(wl,w2) is real, it is applicable

for any other case. For instance, the linear phase 2-D FIR
filter design where S = {(n},n5)|0<n <N}, 0<ny<Ny} and

Hy(w)wy) = A(wl,wz)~exp{—j(w1N1+m2N2)/2} can be
performed by redefining E(wj,w,) as E(w)w,y) =
{Hd(wl,wz)—H(wl,w2)}~exp{j(wlN1+w2N2)/2} which can

be expressed as a real linear vector model given by (4). On
the other hand, if H d(w ,w2) is an arbitrary complex

frequency response with real filter coefficients, the error
vector E given by (4) is complex. The WLS estimate h can

be similarly obtained. The reader can refer to [5] for
details.

max{w
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Fig. 1. The proposed WLS approximation method.

3. Design Examples

Let us show two lowpass filter design examples to
justify the good performance of the proposed
approximation method. Assume that the desired frequency
response is zero—phase and circularly symmetric as follows:

H () = 1, (w),wp)€ R, (19)

0, (wl,w2)€$2

where the passband .921 is the interior of the circle of
radius 1, =0.4x and the stopband R 18 the exterior of the
circle of radius 15=0.6. The p=2 nontransition bands 521,
&, and the transition band are shown in Figure 2. Further
assume that the frequency response H(wl,wz) is eightfold

symmetric. For this case,
h(n1,n2)=h(—n1,n2)=h(n1,—n2)=h(n2,n1). (14)
Thus it is sufficient to approximate the desired frequency
response in the shaded regions R, and R, indicated in
Figure 2. Moreover, assume that the domain of support S
= {(n;,ny)|—N<n; <N, —N<ny<N}, which implies that the

FIR filter to be designed is an eightfold symmetric
(2N+1)x(2N+1)—point filter due to (14). Remark that the
constraint given by (14) can be easily taken into account

in formulating the linear vector model given by (4) so that
the vector h only consists of nonredundant coefficients

{h(nl,n2) |05n25n15N}.

In the following two design examples, the sampling
points (wli,w2i), i=1, 2, ..., M, include uniform sampling

points on the Cartesian grid (klAw, k2Aw) in the regions

R, and R,, K; = Int{l+ r;/(v2-Aw)} uniform sampling
points on the boundary between R1 and transition band,

and Ky = Int{1+ I/ (+2:Aw)} uniform sampling points on
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the boundary between R, and transition band, where

Int[x] denotes the integer part of x. The sampling interval
Aw was assigned to Aw=r/64. After the optimum filter
was obtained by the proposed approximation method with
the convergence parameter a (see (11)) set to 0.01, we
then searched for the maximum error via a very dense
discrete Fourier transform of the optimum filter.

Example 1:
Assume that the desired tolerance error ratio between
passband and stopband is equal to pl/p2=1. The

parameter q (see (1222 was set to 1.5 in the proposed
approximation method. The numerical results of the
designed filters are shown in Table 1. For comparison, the
corresponding results reported in [2] and [3] are also shown
in Table 1. We can see, from Table 1, that maximum
errors associated with the proposed method are slightly
larger (around 1%) than the corresponding maximum
errors associated with Harris' steepest ascent method [2],
while they are smaller than those associated with the
modified Lawson's method [3]. However, the modified
Lawson's method spends fewer iterations.

On the other hand, we also performed the design of
9x9—point FIR filter using the proposed approximation
method with different values of q. The maximum errors of
the designed filters along with the total iterations spent
are shown in Table 2. One can observe, from Table 2, that
the proposed method is convergent for 1<q<2 with the
same maximum error. The parameter q plays a role similar
to the step size parameter in the well<known
least~mean—square (LMS) adaptive filter. By our
experience, for a small q, it is overdamped in that
E wl,w2) follows a smooth path with iteration number,

-

stopband

passband

transitjon
band

-7

Fig. 2. Passband, stopband and transition band of the
desired circularly symmetric lowpass filter.

approximation method with q=
results reported in [2] (Harris'
those reported in [3] (Modifi
tolerance error ratio (between

Table 1.
Numerical results of the designed zero—phase eightfold
symmetric lowpass filters associated with the proposed

1.5, and the corresponding
steepest ascent method) and
ed Lawson's method).” The
passband and stopband) is

=1.
and for a large q, it is underdamped in that E(wl,wz) pl/ P2
exhibits oscillations from iteration to iteration. Order Algorithm Maximum | Iteration
Example 2: error number
For this example, we employed the proposed The proposed 0.1281 51
approximation method with the parameter q set to 1.5 to method
design 9x9-—point lowpass filters for different values of 7x7 Harris [9] 0.1272 _
tolerance error ratio pl/p2 between passband and :
stopband. Frequency responses of the designed equiripple Lawson [11] 0.1338 9
filters for pl/p2 =35, 1, and 1/5 are shown in Figures 3a, The proposed 0.1151 a8
3b and 3¢, respectively. The maximum errors 6, in method
passband and b, in stopband of each designed filter as well 9x9 Harris [9] 0.1141 —
as the ratio 61 / b, are shown in Table 3, from which, one Lawson [11] 0.1202 8
can see that error ratios 61/152 are very close to the The proposed 0.0577 174
corresponding values of p1/py, and that 8) is larger and 6, 11x11 | method
is smaller for a larger pl/pZ. Moreover, one can observe, Harris [9] 0.0569 —
Table 2. . .
Numerical results of the designed zero—phase eightfold symmetric 9x9—point lowpass
filters by the proposed approximation method with different values of q. The tolerance
error ratio (between passband and stopband) is p1/py=1.
q 1.0 1.1 1.2 1.3 1.4 1.5 1.8 1.7 1.8 1.9 2.0
Iteration a1
number 79 63 47 42 38 a8 34 32 54 >500
Maximum | 0.1150 | 0.1149 | 0.1149 0.1149 | 0.1149 | 0.1149 | 0.1149 | 0.1148 | 0.1150 | 0.1149 -
error
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Fig. 3. Frequency responses of the designed zero—phase
ei§htfold symmetric 9x9—point lowpass filters with
tolerance error ratio (between passband and

stopband) pl/p2 equal to (a) 5, (b) 1 and (c) 1/5,

respectively.

from Figure 3, that for a larger Py/pg; the ripple in
passband is deeper since 61 is larger, while the frequency
response in stopband is flatter since 62 is smaller.

Table 3.
Maximum errors §; (in passband) and 6, (in stopband) of

the designed zero—phase eightfold symmetric 9x9—point
lowpass filters with different values of tolerance error ratio
p1/py (between passband and stopband).

P, /Py 6, 6, 6,/6,
5 0.1923 | 0.0386 | 4.961
1 0.1149 | 0.1148 | 1.000
1/5 0.0401 | 0.2014 | 0.199

4. Conclusions

We have presented a new self—initiated iterative WLS
approximation method (see Figure 1) for the design of 2-D
equiripple FIR filters which is basically an extension of
Chi and Chiou's WLS approximation method [5] for the
design of 1-D FIR digital filters with arbitrary complex
frequency response. The proposed approximation method
can be used to design real 2-D FIR filters with any
arbitrary complex frequency response although we
illuminated it via a zero—phase case, and the designed
optimum filter basically is of equiripple. It allows the
exact specification of the cutoff frequencies with no need of
any initial guess for a suitable set of extremal frequencies
or filter coefficients. We also showed two design examples
of circularly symmetric lowpass filter which indicate that
the performance of the proposed method is very close to
the performance of exchange ascent algorithms [1,2].
Moreover, the proposed method does not have the
degeneracy problem existing in exchange ascent algorithms
because the WLS estimate given by (5) is associated with
an overdetermined system o% M>>dim{h} linear equations

of dim{h} unknowns (see (4)). Besides, the WLS estimate
can be efficiently computed in a recursive fashion [6).
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